Table 7 FGLS Regression: Involved Drivers in Injury and PDO Crashes, < 601

Table 7
FGLS Regression: Involved Drivers in Injury and PDO Crashes, < 601

Excel | CSV

Variable Total crashes
(a)
Fatal crashes
(b)
Coeff z-stat Coeff z-stat
Rpcinc –3.80E-03 –2.85 1.95E-02 5.07
Cpigas –0.829 –4.59 –4.0889 –8.27
Cpialc –0.537 –3.20 –4.643 –7.08
Uerate –8.545 –0.22 637.308 6.21
Vmtlt60 2.89E-08 1.59 6.16E-08 1.72
Popden 0.650 4.96 0.590 2.00
Pctge60 –303.521 –5.69 –954.108 –7.59
Alclic 0.126 29.37 0.160 19.09
AB541 –28.288 –5.75 –23.961 –3.59
APS 29.428 4.80 146.169 7.67
Slmt_65 11.545 2.57 42.969 5.92
Slmt_70 –2.853 –0.66 –23.468 –2.77
Pc_dui2 –204.864 –0.93 –19481.330 –6.02
Pcmcyc –61.949 –0.53 –1919.889 –4.55
Const 242.387 7.19 1131.578 7.90
  ρ range: (-0.196, 0.968)
mean ρ: 0.552
Wald χ2(37) = 23414.5
Prob > χ2(37) = 0.0
ρ range: (0.058, 0.947)
mean ρ: 0.742
Wald χ2(37) = 9247.1
Prob > χ2(37) = 0.0

1 Not reported are estimates of the constant term and fixed effects for 24 consolidated metropolitan statistical area counties-Alameda, Butte, Contra Costa, El Dorado, Kern, Los Angeles, Marin, Napa, Orange, Placer, Riverside, Sacramento, San Benito, San Bernardino, San Diego, San Francisco, San Luis Obispo, San Mateo, Santa Clara, Santa Cruz, Solano, Sonoma, Sutter, and Ventura.

2 Predicted Pc_dui was used in the total crashes equation.